2019/12/21

Cyclic Difference Sets - by Kris Coolsaet

に巡回差集合、完全差集合について確認するために参照したサイトを確認していると、そこそこ文量があり、一気に読めそうになかった。

目次がなく、読みたいページにすぐにたどり着くことができないので、目次代わりのリンク集を作っておく。内容はまだ読んでいないのでわからない(前回参照したところは3.のCyclic difference setsである)。

実際には章番号はついていないが、ここでは便宜上つけている。各リンクの後にあるのは小見出し的な箇所。


Cyclic Difference Sets - by Kris Coolsaet
  Preface
  1. Weird coloured necklaces
  2. What is happening?
    Do these necklaces have any use?
  3. Necklaces and numbers
  4. Difference tables
  5. Cyclic difference sets
  6. Sorry, could you repeat that?
    Short necklaces
  7. New sets for old: Shifts
  8. Shifts have remarkable properties
  9. Is this geometry?
  10. What has all this to do with CDSs?
    How about an example?
  11. Is this any help?
  12. No, nothing in mathematics is as simple as it looks.
  13. Affine and semi-affine planes
  14. Finite affine planes
    Some examples
    Semi-affine planes
  15. And now for something completely different
  16. Modular arithmetic
  17. Modular arithmetic and semi-affine planes
  18. An example might make this more clear
  19. Fibonacci turns up everywhere
  20. Hm ... three, eight, ... sounds familiar!
    Great! And now we do the same with q=5,7,11... Right?
  21. Fibonacci's nephews
  22. Other nephews of Fibonacci
    Which nephew for which prime?
  23. How to make perfect CDSs
  24. Meet the rest of the family!
  25. Projective planes
  26. Defining axioms
    Coordinates
  27. Other CDSs
  28. A semi-affine CDS of order 4.
    A semi-affine CDS of order 9.
    A semi-affine CDS of order 8.
    A perfect CDS of size 5 (order q=4).
    A perfect CDS of size 9 (order q=8=p^3 with p=2).
  29. New sets for old: multipliers
  30. Multipliers
    Using `runs' to construct CDSs
  31. Golomb rulers
  32. Golomb rulers and CDSs

0 件のコメント:

コメントを投稿

ブログ アーカイブ