目次がなく、読みたいページにすぐにたどり着くことができないので、目次代わりのリンク集を作っておく。内容はまだ読んでいないのでわからない(前回参照したところは3.のCyclic difference setsである)。
実際には章番号はついていないが、ここでは便宜上つけている。各リンクの後にあるのは小見出し的な箇所。
Cyclic Difference Sets - by Kris Coolsaet
Preface
- Weird coloured necklaces What is happening?
- Necklaces and numbers Difference tables
- Cyclic difference sets Sorry, could you repeat that?
- New sets for old: Shifts Shifts have remarkable properties
- Is this geometry? What has all this to do with CDSs?
- Is this any help? No, nothing in mathematics is as simple as it looks.
- Affine and semi-affine planes Finite affine planes
- And now for something completely different Modular arithmetic
- Modular arithmetic and semi-affine planes An example might make this more clear
- Fibonacci turns up everywhere Hm ... three, eight, ... sounds familiar!
- Fibonacci's nephews Other nephews of Fibonacci
- How to make perfect CDSs Meet the rest of the family!
- Projective planes Defining axioms
- Other CDSs A semi-affine CDS of order 4.
- New sets for old: multipliers Multipliers
- Golomb rulers Golomb rulers and CDSs
Do these necklaces have any use?
Short necklaces
How about an example?
Some examples
Semi-affine planes
Great! And now we do the same with q=5,7,11... Right?
Which nephew for which prime?
Coordinates
A semi-affine CDS of order 9.
A semi-affine CDS of order 8.
A perfect CDS of size 5 (order q=4).
A perfect CDS of size 9 (order q=8=p^3 with p=2).
Using `runs' to construct CDSs
0 件のコメント:
コメントを投稿