2011/06/01

ネコウサの定理

結城浩『数学ガール/ゲーデルの不完全性定理』からの問題。
帽子は何色?
司会者は、A、B、そしてC(あなた)の三人を座らせた。

司会者「これからみなさんに帽子をかぶせます。かぶせるのは、全部で五個ある帽子のうち三個です。五個の帽子の三個は、二個はです。自分の帽子の色を見ることはできませんが、他人の帽子の色は見えます」

司会者は、三人に帽子をかぶせ、残った二個の帽子を隠した。

司会者「Aさん、あなたの帽子は何色でしょう?」
参加者A「……わかりません」
司会者「Bさん、あなたの帽子は何色でしょう?」
参加者B「……わかりません」

Cであるあなたには、AとBの帽子が見える。両方ともだ。

司会者「Cさん、あなたの帽子は何色でしょう?」
参加者C「……」

さあ、Cであるあなたの帽子の色は何色?



この問題は、漫画『数学ガール ゲーデルの不完全性定理①』では、次のようなシチュエーションに変わっています。
耳は全部で5個あります。
ウサミミは3個、ネコミミは2個です。
自分の耳は見えません。
さて、自分がつけている耳は何ミミなのか当てましょう。

どちらの問題も構造は同じです。

この手の問題は、論理パズルの本を見ると、必ずと言っていいくらい出てくるものです。ゆっくりじっくり考えると答えは出てきます。

ところが、ゆっくりじっくり考える前に答えを見てしまうのです…(少なくとも私は)。

なので、この問題はゆっくりじっくり考えてください。


ここでは、原作と漫画の違いについて。

漫画ではこの問題での法則を「ネコウサの定理」と名付けています(原作の方では、「…というのは《定理》みたいなもんだね」のみ)。

この漫画の方は、上記のことからもわかるように、原作を忠実に漫画にしたものではありません。再構成しています。

ネコウサを出すことで、萌えキャラを出す狙いもあるかと思いますが、やはり絵的に映えるのでしょう。

この漫画版のイメージが動的だとすると、原作は静的なイメージです。

ゲーデルの不完全性定理に限らず、数学はどちらかというと静的なイメージ。

証明が漫画でどのように表現されるのか楽しみです。

ブログ アーカイブ